Rajesh Metal Syndicate
Rajesh Metal Syndicate
6th Kumbharwada, Mumbai, Maharashtra
GST No. 27AAIFR4584N1ZF
TrustSEAL Verified
Call 08048600374 75% Response Rate
SEND EMAIL

Phosphorus Bronze

Offering you a complete choice of products which include phosphor bronze scrap, phosphor bronze castings, phosphor bronze rods, bronze bush, bronze rods and bronze scrap.

Phosphor Bronze Scrap

Phosphor Bronze Scrap
  • Phosphor Bronze Scrap
Ask For Price
Product Price :Get Latest Price

Phosphor bronze Scrap

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness.[1]

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi
Request
Callback
Yes! I am interested

Phosphor Bronze Castings

Phosphor Bronze Castings
  • Phosphor Bronze Castings
Ask For Price
Product Price :Get Latest Price

Phosphor Bronze casting

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness.[1]

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi
Request
Callback
Yes! I am interested

Phosphor Bronze Rods

Phosphor Bronze Rods
  • Phosphor Bronze Rods
Ask For Price
Product Price :Get Latest Price

Phosphor Bronze Rods

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness.[1]

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi
Request
Callback
Yes! I am interested

Bronze Bush

Bronze Bush
  • Bronze Bush
Ask For Price
Product Price :Get Latest Price

Bronze Bush

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (such as aluminium, manganese, nickel or zinc) and sometimes non-metals or metalloids such as arsenic, phosphorus or silicon. These additions produce a range of alloys that may be harder than copper alone, or have other useful properties, such as strength, ductility, or machinability.

The archeological period in which bronze was the hardest metal in widespread use is known as the Bronze Age. The beginning of the Bronze Age in India and western Eurasia is conventionally dated to the mid-4th millennium BC, and to the early 2nd millennium BC in China;[1] elsewhere it gradually spread across regions. The Bronze Age was followed by the Iron Age starting from about 1300 BC and reaching most of Eurasia by about 500 BC, although bronze continued to be much more widely used than it is in modern times.

Because historical pieces were often made of brasses (copper and zinc) and bronzes with different compositions, modern museum and scholarly descriptions of older objects increasingly use the generalized term "copper alloy" instead.
Request
Callback
Yes! I am interested

Bronze Rods

Bronze Rods
  • Bronze Rods
Ask For Price
Product Price :Get Latest Price

Bronze Rods

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (such as aluminium, manganese, nickel or zinc) and sometimes non-metals or metalloids such as arsenic, phosphorus or silicon. These additions produce a range of alloys that may be harder than copper alone, or have other useful properties, such as strength, ductility, or machinability.

The archeological period in which bronze was the hardest metal in widespread use is known as the Bronze Age. The beginning of the Bronze Age in India and western Eurasia is conventionally dated to the mid-4th millennium BC, and to the early 2nd millennium BC in China;[1] elsewhere it gradually spread across regions. The Bronze Age was followed by the Iron Age starting from about 1300 BC and reaching most of Eurasia by about 500 BC, although bronze continued to be much more widely used than it is in modern times.

Because historical pieces were often made of brasses (copper and zinc) and bronzes with different compositions, modern museum and scholarly descriptions of older objects increasingly use the generalized term "copper alloy" instead.
Request
Callback
Yes! I am interested

Bronze Scrap

Bronze Scrap
  • Bronze Scrap
Ask For Price
Product Price :Get Latest Price

Bronze Scrap

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (such as aluminium, manganese, nickel or zinc) and sometimes non-metals or metalloids such as arsenic, phosphorus or silicon. These additions produce a range of alloys that may be harder than copper alone, or have other useful properties, such as strength, ductility, or machinability.

The archeological period in which bronze was the hardest metal in widespread use is known as the Bronze Age. The beginning of the Bronze Age in India and western Eurasia is conventionally dated to the mid-4th millennium BC, and to the early 2nd millennium BC in China;[1] elsewhere it gradually spread across regions. The Bronze Age was followed by the Iron Age starting from about 1300 BC and reaching most of Eurasia by about 500 BC, although bronze continued to be much more widely used than it is in modern times.

Because historical pieces were often made of brasses (copper and zinc) and bronzes with different compositions, modern museum and scholarly descriptions of older objects increasingly use the generalized term "copper alloy" instead.
Request
Callback
Yes! I am interested

Phosphor Bronze Bushes

Phosphor Bronze Bushes
  • Phosphor Bronze Bushes
Ask For Price
Product Price :Get Latest Price

Phosphorus Bronze Bushes

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness.[1]

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi
Request
Callback
Yes! I am interested

Phosphor Bronze

Phosphor Bronze
  • Phosphor Bronze
Ask For Price
Product Price :Get Latest Price

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness.[1]

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi
Request
Callback
Yes! I am interested

Bronze Casting

Bronze Casting
  • Bronze Casting
Ask For Price
Product Price :Get Latest Price

Bronze Casting

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (such as aluminium, manganese, nickel or zinc) and sometimes non-metals or metalloids such as arsenic, phosphorus or silicon. These additions produce a range of alloys that may be harder than copper alone, or have other useful properties, such as strength, ductility, or machinability.

The archeological period in which bronze was the hardest metal in widespread use is known as the Bronze Age. The beginning of the Bronze Age in India and western Eurasia is conventionally dated to the mid-4th millennium BC, and to the early 2nd millennium BC in China;[1] elsewhere it gradually spread across regions. The Bronze Age was followed by the Iron Age starting from about 1300 BC and reaching most of Eurasia by about 500 BC, although bronze continued to be much more widely used than it is in modern times.

Because historical pieces were often made of brasses (copper and zinc) and bronzes with different compositions, modern museum and scholarly descriptions of older objects increasingly use the generalized term "copper alloy" instead.
Request
Callback
Yes! I am interested
X

Explore More Product

Zinc Concrete Anodes
Zinc Concrete Anodes
Get Best Quote
Gunmetal Casting
Gunmetal Casting
Get Best Quote
Aluminium Anodes
Aluminium Anodes
Get Best Quote
Lead Plates
Lead Plates
Get Best Quote
Aluminium Casting
Aluminium Casting
Get Best Quote
View All Product


Reach Us
Rajesh Baldota (Partner)
Rajesh Metal Syndicate
No. 15, Doctor Building, Trimbak Parsuram Street
6th Kumbharwada, Mumbai - 400004, Maharashtra, India


Call Us


Send E-mail